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Multiple scale derivation of the relativistic ponderomotive force
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In this paper we use simple physical reasoning to deduce a formula for the ponderomotive force exerted by
an intense laser pulse on an electron. We verify this formula numerically, for three cases of current interest, and
analytically, using the method of multiple scales.
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[. INTRODUCTION where the fluid momentura= yv. It follows from this defi-
nition that y= (1+u?)2,

The ponderomotive force associated with a light wave of The ponderomotive term on the right-hand side of Eq.
variable amplitudd 1-10] drives many phenomena that oc- (1.7) is valid for arbitrary laser intensity. Together with the
cur in inertial-confinement-fusiofl1] and particle accelera- continuity and Maxwell equations, it allows one to analyze
tion [12] experiments. The existing formula for the pondero-the interaction of a laser pulse with an electron fluid. How-
motive force was derived under the assumption that thever, there is a tradition in plasma physics of looking at the
quiver speed of electrons oscillating in the applied electricsame phenomenon from different viewpoints. By doing so,
field is much less than the speed of light. With the advent obne often gains physical insight into the phenomenon under
intense laser pulsdd.3], it is important to extend this for- study. The ponderomotive term in E(..7) is not the force
mula to electron quiver speeds that are comparable to then a Lagrangian fluid element or a single electron. Conse-
speed of light. quently, it cannot be used as the foundation of a single-

As an introduction to this subject, we review the deriva-particle or kinetic analysis of the interaction of a laser pulse
tion of the ponderomotive term in the electron-fluid momen-with a plasma.
tum equation. The standard form of this equation is The outline of this paper is as follows. In Sec. Il the

motion of an electron in a light wave of constant amplitude is

(9 +v-V)(yv)=—(E+VXB), (1.1)  studied analytically. In Sec. Ill the results of this study are

used to make a heuristic derivation of the formula for the

where ponderomotive force associated with a light wave of variable
B o1 amplitude. This formula is verified numerically in Sec. IV

y=(1-v) (1.2 and analytically in Sec. V. Finally, the results of this paper

: . . . ) are summarized in Sec. VI.
is the Lorentz factor associated with the fluid velocity and

E=—0A, B=VxA 1.3 Il. PARTICLE MOTION IN A PLANE WAVE

. - ) . The motion of a charged particle, of chargeand mass
in the radiation gauge. These differ from the usual equations, iy an electromagnetic field is governed by the equation
in that wt—t, wx/cx—X, v/Ic—v, eE/mwc—E, eB/mwc [1'5]

—B, andeA/mc®—A. By using the vector identity
VI =Vyvx[VX(W)], (14 AU, F2,)=U", 2., @D
where 7 is the proper time of the particle multiplied hy

one can rewrite the momentum equation &4 : . ) o .
g 54 u# is the four-velocity of the particle divided ky, a* is the

a(Y—A)=vX[V X (yW—A)]-V7y, (1.5  four-potential of the field multiplied byq_/mcz, and 4,
=dlox*. The metric four-tensorg,,=diag(1,-1,-1,

from which follows the relativistic vorticity equation —1) for an elliptically polarized field
A VX (WW—A)]=VX{VX[VX(w—A)]}. (1.6 a#=(0,0,e,cosp,e,sing), (2.2

For a plasma that is at rest before the laser pulse arrivesyheree,=es, e,=e(1—- 6% andp=t—x.
VX (yv—A)=0 initially. Equation (1.6) ensures that The motion of a charged particle in a plane wave is well
V X (yv—A)=0 for all time. Thus the momentum equation known[16—-19. We present an analysis of this motion here

can be rewritten afl4] because it is the foundation of the analyses of Secs. Il and
V. Since the four-potential does not depend yror z, it
d(u—A)=—Vy, (1.7  follows from Eq.(2.1) that
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d.(u, +a,)=0. (2.3

Transverse canonical momentum is conserved. It follows

from Eq. (2.3 that

u (r)=u (0)+a, (0)—a (7). 2.4
Thet andx components of Eq2.1) are
dT’yZ%&th, dTuX:_%axujz_' (25)

Since the four-potential is a function bf x, it follows from
Egs. (2.5 that

d(y—u)=0. (2.6

Because the particle gains energy and momentum at the ex-
pense of the field, the ratio of particle momentum to particle
kinetic energy is identical to the ratio of field momentum to

field energy, which is 1 in the units of E€R.1). By combin-
ing Eq. (2.6) with the definition ofy, one can show that

u?(r)—u?(0)
2[y(0)—u,(0)]"

The corresponding equation fof7) follows from Eqgs.(2.6)
and(2.7). Because the transverse potendalis a function of
¢ rather thanr, Egs. (2.4) and (2.6) describe the particle

uy(m)=uy(0)+ 2.7

momentum implicitly. One can make this description explicit

and determine of the particle trajectoxy(7) by using the
result

d,é=(0)—u,(0). 2.8

The proper frequency of the wave is constant.
It is clear from Eqgs(2.4), (2.7), and(2.8) that the particle
motion is a superposition of sinusoidal oscillationsriand

steady drifts inr. It follows from Eq.(2.4) that the transverse

drifts are given by

(uy)=uy(0)+eycog —Xp), 2.9

<uz> =U,(0)+e,sin(—Xo),

where () denotes ther averagef2” dr/2w and (X,0,0) is

the initial position of the particle. By decomposing the lon-

gitudinal momentum into its oscillatory component

u?(m)—(u?)

U\|(T)—<U\\>=m (2.10
and its drift component
2\ ..2 0)
(uy=u,(0)+ ) Zui (2.11)

2[y(0)—u(0)]”

and combining Egs(2.4) and(2.11), one can show that the

longitudinal drift is given by
(Uy)=Uy(0) +[4(uy)e,cog —Xq) +4(u,)e,sin(—Xo)
— 509 — 2Xo) + €2C0 — 2Xo) J/4[ ¥(0) — uy(0)].
(2.12
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For linear polarization Eq2.12 reduces to

(Uy)=u,(0) +[4(uy)e cod —Xo)

—e?cog —2x0) /M »(0)—u(0)], (213
whereas for circular polarization it reduces to
(Ux) = ux(0) +e[(uy)cog —Xo)
+{Uy)Sin(—xo) IV2[ y(0) —ux(0)].  (2.14

The corresponding equations foy) follow from Eg. (2.6)
and Egs(2.12—(2.14). For completeness, a covariant analy-
sis of the particle motion is given in Appendix A.

lIl. HEURISTIC DERIVATION
OF THE PONDEROMOTIVE FORCE

The method used to solve E.1) for a plane wave of
constant amplitude can also be used when the wave ampli-
tude e is a function oft—x. In fact, Egs.(2.4), (2.7), and
(2.8) are still valid. When the wave amplitude varies slowly
compared to the wave phase, the particle motion consists of
an oscillation about a guiding center and a guiding-center
drift that varies slowly. As the guiding center drifts, the os-
cillation amplitude follows the wave amplitude at the guid-
ing center adiabatically.

To describe this motion quantitatively, &t be the posi-
tion four-vector of the guiding center an#'=d_&* be the
associated four-momentum. The ponderomotive four-force is
the proper rate of change of the guiding-center four-
momentum. One might expect this four-force to also be the
average rate of change of the particle four-momentum. How-
ever, by averaging the transverse particle motion, one finds
that

<druy>%[droey( TO)]COQ TO)! (31)

<dTuZ>~[dTOeZ( To)]SIN( 7p),

where 7y is the initial phase with respect to which the aver-
age is taken. Because the oscillation amplitude changes dur-
ing each oscillation, the transverse components of the mo-
mentum change by amounts that depend on the initial phase.
However, it follows from Eq(2.4) that the transverse com-
ponents of the guiding-center momentum are constant. Thus,
if one is to determine the ponderomotive four-force by aver-
aging, one must discount terms that depend on the initial
phase. With this caveat added to the definitioq pfone can
write

dvy=(d,u,)~0, d,v,=(d,u,)~0 (3.2
and show that
dv,=(d,u)~d, (e;+e2)/4 y(0)—u0)]. (3.3

By using the relationship betweenand ¢, and Eq.(2.8),
one can show thal .= —[ y(0)—uy(0)]dy. It follows from
this result and Eq(3.3) that

d v~ —d,(e%/4). (3.9
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FIG. 1. Particle motior(solid line) and guiding-center motion FIG. 2. Particle motior(solid line) and guiding-center motion

(broken ling caused by a circularly polarized pulse with amplitude (broken ling caused by a circularly polarized pulse with amplitude

e=3sirf[0.05¢~x)]. Initially, uy=1, u,=1, andu,=1. (@ The  e=3sir0.05¢—x)]. Initially, u,=1, u,=1, andu,=1. (a) The

x component of the momentun(b) The x component of the dis- y component of the momentuntb) The z component of the mo-

placement caused by the pulse. The initial drift upon which thismentum.

displacement is superimposed is not shown.

o e=3sirf0.05(t—x)], and choseu,(0)=1, uy(0)=1, and

In a similar way, one can show that u,(0)=1. Because the pulse propagates at the speed of light,

d_ v~ ,(e2/4) (3.5 it overtak_es t_he particle. T_he re_sulting partic_le motion is il-
T ' ' lustrated in Figs. 1 and 2, in which the solid lines denote the

By using the facts thaﬂe2/2=<af> andaf=—aVaV, one can particle trajectory, determined numerically from E&.1)

rewrite Eqs.(3.2), (3.4), and(3.5) as an_d _the initial conditions, and the broken Ii_nes denote the
guiding-center trajectory, determined numerically from Egs.
dv,~—d,(a,a’l2). (3.6) (3.7, (2.9, and(2.12. As the pulse overtakes the particle,

the amplitudes of the transverse components of the oscilla-
The second term in this relation is the ponderomotive fourtion increase and decrease in proportion to the pulse inten-
force. sity. However, there is no change in the transverse compo-
The guiding-center equatidB.6) was derived for the spe- nents of the average momentum and the particle exits the
cial case in whiche is a function oft—x. However, the pulse withu,=1 andu,= 1. The amplitude of the longitudi-
principle of Lorentz covariance suggests that it is valid fornal component of the oscillation also increases and decreases

the general case in whiohis a function oft, x, y, andz. in proportion to the pulse intensity. However, because Eq.
Consequently, we postulate tH&i0] (2.7), which describes the relation between the longitudinal
) and transverse components of the momentum, is nonlinear,
d7,€.=—d.(a,2"12)¢, (3.7 the longitudinal component of the average momentum

changes. This change can be analyzed quantitatively. It fol-

and the initial guiding-center momentum in a wave of vari-jows from thet and x components of Eq(3.7), and the
able amplitude is identical to the particle drift momentum in assymed dependence®bn t—x, that

a wave of constant amplitude, which is given by E@9
and(2.12. For future reference, E3.7) has associated with d,(v—1v,)=0. 4.0
it the conservation equation
Sincewv, andv, are constant, E(3.8) reduces to
d(v,v*2+(a,a"/2))=0. (3.9
d,[(v¥—v?)2—e?/4]=0. 4.2)
IV. NUMERICAL STUDY OF THE PARTICLE MOTION By combining Egs(4.1) and(4.2) with the initial conditions,

To test the guiding-center model described in Sec. Ill, weone can show that,= 2+ e?/4 andv,= 1+ e?/4. At the peak
studied three representative examples numerically. The firsif the pulsev,=13/4, inagreement with Fig. (k). Because
example concerns a particle that moves in front of a lasethe x component of the ponderomotive force is positive in
pulse. We considered a wide, circularly polarized pulse, wittthe front of the pulse and negative in the back of the pulse,
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FIG. 3. Particle motior(solid line) and guiding-center motion FIG. 4. Particle motion(solid line) and guiding-center motion
(broken ling caused by a linearly polarized pulse with amplitude (roken ling caused by a linearly polarized pulse with amplitude
e,=c0s(0.0%). Initially, u,=0, uy=0, andu,=0. (a) Thez com- e,=Cc0(0.0%). Initially, u,=0, u,=0, andu,=0. (@) Thex com-
ponent of the momentunib) The z component of the displacement. ponent of the momentuntb) They component of the momentum.

the guiding center is accelerated and decelerated by equaljting particle motion is illustrated in Figs. 5 and 6. As the
amounts. In this example the correspondence between the,icle moves inward, the amplitudes of the longitudinal and
guiding-center motion and the particle motion is excellentansyerse components of the oscillation increase in propor-
The predictions of the guiding-center model are also consisgop, 10 the pulse intensity. However, tiyecomponent of the
tent with particle-in-cell simulations of the interaction of a ponderomotive force opposes the inward motion and the par-
laser pulse with an underdense plasi®a). _ . ticle is repelled just before it reaches the propagation axis of
The second example concerns a particle that is born insidge pyise. As the particle moves outward, the amplitudes of
a laser pulse by high-field ionizatid22]. We considered & ¢ |ongitudinal and transverse components of the oscillation
long pulse that is linearly polarized in thedirection, with  gjecrease in proportion to the pulse intensity. This transverse

e=co§(0.0&),_and choseu,(0)=0, uy(0)=0, andu,(0)  repyision can be analyzed quantitatively. Singe v, and
=0. The resulting particle motion is illustrated in Figs. 3 and v, are all constant, E43.8) reduces to

4. The particle is born near the propagation axis of the pulse

and is pushed outward by ttrecomponent of the pondero- dT(v§/2+ e?/4)=0. (4.4
motive force. As the particle moves outward, the amplitudes

of the longitudinal and transverse components of the oscillatt follows from Eq. (4.4) and the initial conditions tha{;§
tion decrease in proportion to the pulse intensity. This trans~ (1—e?)/2. The outward guiding-center trajectory is the
verse expulsion can be analyzed quantitatively. Since inverse of the inward trajectory. In this example the corre-

vy, andw, are all constant, Eq3.8) reduces to spondence between the guiding-center motion and the par-
) 5 ticle motion is good. We found the correspondence to be
d,(v;/2+e/4)=0, (4.3 even better for gentler gradients in pulse intensity.

, L, o In Figs. 1-6 the particle and guiding-center positions
in which v;/2 plays the role of kinetic energy amd/4 plays  ere plotted as functions of the proper time. We verified
the role of potential energy. It follows from E@t.3) and the  nymerically that plotting the spatial components of the
initial conditions thatv;~(1—e?)/2. As the guiding center guiding-center position as functions of the temporal compo-
exits the pulsev,~1#2, in agreement with Fig. @). Al-  nent of the guiding-center position produces the correct
thOUgh the particle is born at rest, it exits the pulse Withguiding-center motion in the |aboratory frame.
u,~3/4 and u,~1. This behavior is consistent with
Egs. (2.9 and (2.12. In this example the correspondence V. MULTIPLE-SCALE ANALYSIS
betWﬁen the guiding-center motion and the particle motion is OF THE PARTICLE MOTION
excellent.

The third example concerns a particle that is injected into In this section we verify Eq(3.7) analytically. Because
a laser pulse from the side. We considered a long pulse thdte fast variation of the four-potential depends on the phase
is linearly polarized in the direction, withe=sir?(0.05y), rather than the proper time, it is advantageous to change the
and choseu,(0)=0.0, uy(0)=0.7, andu,(0)=0.0. The re- independent variable in E¢2.1) from 7to ¢. The result is
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FIG. 5. Particle motion(solid line) and guiding-center motion FIG. 6. Particle motior(solid line) and guiding-center motion

(broken ling caused by a linearly polarized pulse with amplitude (broken ling caused by a linearly polarized pulse with amplitude
e,=sir%(0.05). nitially, u,=0.0, u,=0.7, andu,=0.0. (@) The e,=sin%(0.05). Initially, u,=0.0, u,=0.7, andu,=0.0. (a) The

y component of the momentuntb) The y component of the dis- 2 component of the momentuntb) The x component of the mo-
placement. mentum.

dy(d,Bdyx,+a,)=dx"d,a,, (5.  Where

— v /
where d,¢=(dyx"dyx,) Y2 The resolution of Eq(5.1) o=(dgy"dyy,+ds0)" (5.7)

into longitudinal and transverse components is facilitated b)t : :
: : o : uation(5.6) can be derived from Eq$5.4) and (5.5, as
the introduction of the four-vectck®, which is defined by sr?own in(Apz)endix B, and need not gi co)nside(rec?) further
Ly ) " o ’ , .
:_he ((jaqbua&orkb K t)'(wbelnd—t(?ek]:(l)ui \2/ecto(; ’Vlwi'gh |shde One can solve Eq¢5.4) and(5.5) by using multiple scale
Ined by the equationst, =0, k,=2, anda'l,=b, where analysis. Lete be a measure of the rate at which the wave

a* is the t_ran_sverse four-potential of a plane wave of arbl'amplitude varies relative to the rate at which the phase var-
trary polarization. In the laboratory frank&=(1,1,0,0) and ies. We introduce the scales

[#=(1,—1,0,0). By using these four-vectors one can write
bo=¢, ¢P1=€d (5.9

. " ... to resolve the fast oscillation and the slow change in the
where #=1"x,,. The transverse position four-vector Sat'Sf'esguiding-center drift, respectively. It follows that

the equation&”y, =0 andl”y,=0. In a similar way, one can
write d d d

Xh=yh+ OkH2+ Bl 412, (5.2

—=——te—. (5.9
ak=bk-+ qk#/2+ plHi2, (5.3 dé deo  dés
We used the notatiod/d¢, andd/d¢, in Eq. (5.9 to dis-

where the transverse four-potential satisfies the equationﬂc,n uish these convective derivatives from the partial deriva-
k’b,=0 andl”b,=0. By substituting decompositior(5.2) 9 P

and (5.3) into Eqg. (5.1) and collecting like terms, one can tives of the four-po.tent|al. We assume that the dependent
variables can be written as

show that
e 1y(-1) (0) (1)
d (1 dy,, )_ ab’dy, 1 ( ap do &q) Yu~€ Y, (1) Y, (do,d1) T ey, (9{’0,(1’1)(:5 10
G0 lode T ynde2layndd v b~ 10N ($1)+ 00 (o, ba) + 0V (bo, ).
) The variablesy; ¥ and (") describe the guiding-center
i (£+p) — db" dy, &_p% M (5.5) drift, which changes on the slow scal,. The variables
d¢ \o 76 d¢ 30 d¢ 30’ y{? and 6() describe the fast oscillation of the particle about

the guiding center, the amplitude of which changes on the
d [14dd _Zﬁb" dy, dp do dq (5.6 Slow scale.
q ' The four-potential satisfies Maxwell's wave equatjdA]

" S0p do dpdg i’
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(g4~ 3"3,)a"=0, (510 dg#¥=20d,y Vb +[ @12 (b "b”) —b b ?]
(5.18

whereg=diag(1,1,1,1). For a wave of constant amplitude,
a,(x")=b'?(4). For a wave of variable amplitude we as- and

sume that S —
dy 6+ dyy P dyy, P =[0 @121 (bO"bI)].
a,(x")~a'Y (polex”) +eal’(¢olex’).  (5.12 (5.19
Each contribution to the four-potential and its partial deriva-Equation(5.18) is the analog of E¢(2.10 and the oscillatory
tives can be written approximately as part of Eq.(A7), and is easy to integrate.
Now consider the initial condition on the order-1 four-
a(poley,,eb,ed)~a(doly Y, 007V, ¢y) momentum. Consistent with E¢5.2), one can write the ini-
1 tial four-momentum as
+ey'?va,a(doly;, M, 67V, ¢1)
u*(0)=v*(0)+1"u,(0)k*/2+K"u,(0)I*/2. (5.20
+e6Vaga(doly, 07, ¢1). (=00 ©
(5.13 It follows immediately that
The first term on the right-hand side of E(5.13 is the d1y', Y(0)= 0% ,(0)—dgy'(0), (5.21
contribution evaluated at the guiding center and the second . 0 o
and third terms are the deviations from this average contri- d; 67 (0)=0'?1"u,(0)~d6'°(0). (5.22

bution that are “felt” by the particle as it oscillates about the ) ) )
guiding center. The corresponding approximation for theEguation(5.21) is the analog of Eqs2.9) and Eq.(5.29 is
convective derivative of the four-potential is discussed inconsistent with Egs2.10 and(2.11.

Appendix C. Henceforth, we will use& to denote the The ordere equations are

guiding-center contributiom( oy’ 2,61, ¢,).

d [ 1 [dyl® dyt"P] —
To proceed further one substitutes E@¢s9), (5.10, and _—_ {_0 R N BN (V)
(5.13 in Egs.(5.4) and(5.5) and collects terms of like order. dé1 (o® [ dgo  dey "
The ordere ! equations are satisfied identically Byisaze d 1 [dy®d gy@] _
(5.10. L4 ‘_ dy,’ | dv,’ +b<1>J
The order-1 equations are deo |0 [ dgpy  dopy | #
d [ 1 dy? — d ‘ o®  [dy? dy\ }
SRl Pty o _ - "
ddg | @ g P } 0. (5.19 deo |2[c P [ dpo ' déy
d |1 dy©»  dy(-v¥] 5b@
— = | = = + 5.2
deg | ¥ 0, 619 [ déo d¢y | dy* 23
where and
o ={[doy @ +dyy "V I[doyy” +dpy, ] d |1 d ( o't —(1)]
36 150" b 1 o703 TP
g8+ dy pl-DyL2 516 Gb1lo®] ddo (200]
(0)v (—1)v] gp0)
andd,=d/dd,. :Z{dy Lay by (524
Equation(5.14) is the analog of Eq(2.3). It follows from déo dé | 960 °
the former equation that
L where
0 — _ (0K
dOyM o b,u . (517) " de(l) dH(O) dy(O)y dy(*l)v
The arbitrary function ofp, that results from theb, integra- T gy | ddy { ddy | dy }
tion can be neglected becauge ¥ already accounts for the (1) ()
slowly varying drift with which this function is associated. x{dy + dy (5.29
Equationg5.15 and(5.16) do not resemble any of the equa- dog de, |’ ’

tions of Sec. Il. However, different forms of the latter equa- _

tions are discussed in Appendix A, from which it is clear thatand bﬁ) and p™ represent the sum of the orderfour-
Egs. (5.195 and (5.16 comprise the analog of EqA9). It potential and the ordes-corrections to the order-1 four-
follows from Eq.(5.15 that () is a function of¢; alone.  potential caused by the oscillation of the particle about the
This result is the analog of E42.8) and facilitates the inte- guiding center.

gration of Eq.(5.17). By combining Eqs(5.16 and(5.17 Although Egs(5.23—(5.25 are lengthy, they do not need
and equating the oscillatory and slowly varying terms thatio be solved in their entirety. By equating the slowly varying
result, one can show that terms in Egs(5.23 and(5.24), one can show that



1 d [ 1 dy,? 1 o(b©@7p()
SO 4. | 5@ ==3 m (5.26
and
1 d[1]  a(b@b?) >
PUE P ] TR
It follows from Eq. (5.19 that
1 d [ 1 do V]
@ dey [c@ de; |
1-(b@"®) dg® d(b©@"b®) 1 d
Bl a® d¢1 d¢1 _O)TM
1dy=[ 1 dy, ™
(0] R | D

When applied to any guiding-center quantity, the operator

d dy“br g g deb
— = 44
de, do, dy” dé1  d¢y

By combining Eq«(5.28 with Egs.(5.26), (5.27), and(5.29),
one can show that

ETR (5.29

1 d

1 d0<—1> a<b 1wp()y
o dg; |

@ dg, b1

o
Recall that the preceding derivation of £§.30 is based on
Eq. (5.5. Had we analyzed Ed5.6) instead, we would have
needed to determine(’, p®, g@, andy!! explicitly.

In the notation of this section, E¢3.7) can be rewritten
as

(5.30

2,(—1)
dxﬂ

1 o(b©@*p(
o 2 g 530
where 7,=er and x4=ex*. Sinced¢,/dr;~1/c®, Eq.
(5.26 is the transverse part of E(p.31). By contracting Eq.
(5.31) with k* andl* and using the identitieled,, = 2J, and
1#9,,=2d,, and the fact thatp~ k“x"1) one can show
that Eqs.(5.27) and(5.30 are equivalent to the longitudinal
part of Eq.(5.3). Thus Eq.(3.7) is correct.
Finally, notice that Eq(5.32) for the guiding-center drift

is written in terms of the proper time, which includes the
effects of the oscillation about the guiding center. Although

this fact does not affect the utility of E¢5.31), it calls into
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VI. SUMMARY

In this paper we solved the equation of motion for an
electron in a plane wave. We used this solution and the prin-
ciple of Lorentz covariance to deduce a formula for the pon-
deromotive force exerted by an intense laser pulse on an
electron. We verified this formula numerically, for three
cases of current interest, and analytically, using the method
of multiple scales.

The aforementioned formula can be used to study the ef-
fects of the radial ponderomotive force on laser-plasma in-
teractions. For particle accelerators, these effects include the
divergence of an electron bunch that is accelerated by a laser
pulse[23], the relativistic focusing of the pulse, and electron
cavitation and magnetic-field generation in the wake of the
pulse.
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APPENDIX A: COVARIANT ANALYSIS
OF THE PARTICLE MOTION IN A PLANE WAVE

The motion of a charged particle in an electromagnetic
field is governed by Eq(2.1). For a plane wave the four-
potentiala* is a function of the phasé=k"x,,. It follows
thatd,a,=k,a,, where the prime denoted¢, and hence

that o
d.(u,+a,)=u"k,a,. (A1)
By substituting the decomposition
U, (1) =v,(7)+K"u, ()l 2+1"u, (k2  (A2)

into Eq. (A1), wherel” was defined after Eq5.1), andv ,
satisfies the equatiortisv,=0 and!l”’v,=0, one can show
that

d(v,+a,)=0,

guestion the aesthetic qualities of the equation. Just as the

proper time is defined by the equatidm= (dx”dx,)*?, one
can define the drift time by the equatiords
=[dxCV7dx{"D1Y2 It follows from this definition, Eq.

(5.19, and the discussion of the preceding paragraph that It follows from the second of Eq$A3) that

ﬂ =[1- (FO)”b_(VO))]M.

dr, (5.32

Equation(5.32 can be used to write E@3.7) in terms of the
drift time.

d,(ku,)=0, (A3)
d.(1"u,)=2v"a,.
It follows from the first of Eqs(A3) that
v, (1)=v,0)+a,0)—a,lr). (A4)
k*u,(7)=k"u,(0) (A5)
and hence that
¢=k"u,(0)7. (AB)
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Equations(A4) and (A6) determinev ,(7) explicitly. There
are at least three ways to obtain an expression 'fof. In
the first approach, one uses Hé4) to rewrite the right-
hand side of the third of Eq$A3) in terms ofa*. It follows
from this equation and EqA6) that

["u,(7)=1"u,(0)+2[v"(0)+a"(0)]
x[a,(7)—a,(0)]/k"u,(0)
+[a"(0)a,(0)—a"(7)a,(7)J/k"u,(0).

(A7)

In the second approach, one uses E) to rewrite the
right-hand side of the third of Eq$A3) in terms ofv#. It
follows from this equation and Eq4A6) that

1"u,(7)=1"u,(0)+[v"(0)v,(0) —v"()v,(7)1/k"u,(0).
(A8)

In the third approach one uses decomposi{id®) to rewrite
the identityu’u,=1 as
(ku,)(1u,)+v'v,=1. (A9)

Sincek”u, andv v, are known quantities, EGA9) provides

a third expression fok”u,, . By rewriting the 1 on the right-
hand side of Eq(A9) in terms of the initial values of the

guantities on the left-hand side, one can rewrite &@) in

the form of Eq.(A8). All three approaches have their uses.

Equation(A4) is the covariant version of E¢2.4), and Egs.
(A5) and (A8) are the covariant versions of E.7) for u,
and its analog fory.
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FOR THE PARTICLE MOTION
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+q/2]db. (B5)

By applying the Euler-Lagrange equations to the integrand
of Eg. (B5), one can show that

d 1 dy”+b
do [ (dgy*dgy, +d,0)7 dgp ~ #
db¥ d 1/0p do ¢
:_i_{__ _p_+_q' (BG)
ay* d¢p 2 \dy* d¢p oy*
d 1 ob” dy, dpdod o
T v mta|=2 4 _p_+_q
de [ (dgy’dsy,+d,0) d0 d¢p o00do 96
(B7)

in agreement with Eqg5.4) and (5.5. One can reproduce
Eq. (5.6 by multiplying Eq.(B6) by —2d,y* and Eq.(B7)
by —d,6, and adding the resulting equations.

APPENDIX C: EVALUATION OF THE FOUR-POTENTIAL

The left-hand side of Eqg.(5.1) contains the term
da,/d¢, which must be evaluated at the position of the
particle. In Sec. V we used Eg&.9), (5.10, and(5.13 to
make a guiding-center expansion af beforewe took the
convective derivative. Specifically, we wrote

dga,~[do+ed;][al” +eaV], (CD

where

0)_57—
a, =a,

(C2

For a particle in an electromagnetic field the normalized

action[19]

S=—f [(dx"dx,)Y?+a”dx,]. (B1)

Traditionally, one parametrizes the particle motion in term
of the proper timer, which is a Lorentz invariant. In this case

S=- f [(d,x"d,x,)"?+a"d,x,]dr. (B2)

By applying the Euler-Lagrange equations to the integrand

of Eq. (B2), one finds that

d(dx,+a,)=d,x"d,a,, (B3)

in agreement with Eq2.1). Alternately, one can parametrize
the particle motion by the phasgé=k”x,, which is also a

Lorentz invariant. In this case

S=—f [(dgx"dyx,)Y2+a"d,x,]dé. (B4)

By using decomposition€.2) and(5.3) one can rewrite Eq.

(B4) as

is the four-potential evaluated at the guiding center and
al=y " a +6%a, (3

is the correction to the four-potential caused by the oscilla-

Sion of the particle about the guiding center. Since the

guiding-center coordinateg %) and §(~ 1) are functions of
¢4 by construction,

da, Ja
kM
dog Jdo (€4
and
da, dy Vs, G, 40 Vda,
d¢y  d¢y dy" d¢p;  dgy 960
It follows from Egs.(C1), (C4), and(C5) that
da, “”_aa_ﬂ cs
6| "ok (€0

and
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da,|V_dy V" da, da, do P ia, dy°ia,
dé dé1 dy" d¢;  dgs 90 dgy dy”
Za (0) 95 Y
pyor PP 40708, o) T8
dpody”  dgg 96 dpod b
(C7)
Alternately, one can write
da, dy’oda, oda, dé da
98, _CY o8, %au 99 d8u )
d¢ do¢ dy” ¢ do¢ 96

in which the guiding-center expansion is maafter the par-
tial derivatives are taken. Since the variationagf with the
position variablesy/” and 6 is slow,
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da, [dy©” dy(‘l)V} da, da,  da,
e + —E L Ee B
d¢ deo dey | dy”  deo by

L |00 do ) oa, co
“dgy  déy | 96 €9

The derivatives of the four-potentials appearing in the
order< terms can be approximated by their guiding-center
values. The remaining term

_ — —
dau 93y YO B | epo 23 (g
ddo I ay’ae 389

Equations(C9) and (C10) are equivalent to EqgC4) and
(C5). This result shows that the guiding-center expansion of
Sec. V was made consistently. The expansion based on Eq.
(C1) is better because it facilitates the identification of com-
binations of terms that are oscillatory and hence do not affect
the guiding-center motion.
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